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Appropriate methods to combine forward and reverse free-energy
perturbation averages

Nandou Lu,a) Jayant K. Singh, and David A. Kofke
Department of Chemical Engineering, University at Buffalo, The State University of New York, Buffalo,
New York 14260-4200

~Received 29 July 2002; accepted 19 November 2002!

We consider the accuracy of several methods for combining forward and reverse free-energy
perturbation averages for two systems~labeled 0 and 1!. The practice of direct averaging of these
measurements is argued as not reliable. Instead, methods are considered of the formb(A12A0)
52 ln@^w(u)exp(2bu/2)&0 /^w(u)exp(1bu/2)&1#, where A is the free energy,b51/kT is the
reciprocal temperature,u5U12U0 is the difference in configurational energy,w(u) is a weighting
function, and the angle brackets indicate an ensemble average performed on the system indicated by
the subscript. Choices are considered in whichw(u)51 and 1/cosh@(u2C)/2#; the latter being
Bennett’s method whereC is a parameter that can be selected arbitrarily, and may be used to
optimize the precision of the calculation. We examine the methods in several applications:
calculation of the pressure of a square-well fluid by perturbing the volume, the chemical potential
of a high-density Lennard-Jones system, and the chemical potential of a model for water. We find
that the approaches based on Bennett’s method weighting are very effective at ensuring an accurate
result~one in which the systematic error arising from inadequate sampling is less than the estimated
confidence limits!, and that even the selectionw(u)51 offers marked improvement over
comparable methods. We suggest that Bennett’s method is underappreciated, and the benefits it
offers for improved precision and~especially! accuracy are substantial, and therefore it should be
more widely used. ©2003 American Institute of Physics.@DOI: 10.1063/1.1537241#

I. INTRODUCTION

Knowledge of free energy is central to understanding of
the behavior of many thermophysical and chemical pro-
cesses, including phase and reaction equilibria, molecular as-
sociation, thermodynamic stability, rare-event kinetics, bind-
ing affinity, and so on.1 Free-energy calculations almost
always involve computation of free-energydifferences, mea-
sured between two systems that differ in thermodynamic
state, Hamiltonian, or in the form of a constraint. The free-
energy difference can be computed in many ways, some
closely related. Categories include free-energy perturbation
~FEP! and other nonequilibrium methods,2 thermodynamic
integration,3 parameter-hopping,4 histograms,5–7 and adia-
batic switching.8 The options are many, yet FEP remains a
popular choice because it is very simple to apply, and in its
basic form it involves no extra calculations on systems that
are otherwise of no intrinsic interest. However, it is prone to
inaccuracy, and if applied carelessly it can give results that
are highly reproducible but incorrect.9,10 Symptoms of the
problem are seen by performing the calculation in two direc-
tions, arbitrarily designated ‘‘forward’’ and ‘‘reverse.’’ The
two calculations should in principle yield the same result, but
usually they differ.11

A way to improve accuracy involves staging the FEP
calculation so that the overall difference is computed as the
sum of two or more smaller differences. Popular two-stage

versions10,12 of this approach include umbrella sampling13

and Bennett’s method.5 Because multistage methods have
FEP as their elementary component, they can suffer from the
same problems as single-stage FEP if they are not used
wisely. One practice calls for using as many stages as pos-
sible to minimize the observed forward/reverse asymmetry in
each. This procedure can yield a correct overall difference,
but it is very inefficient.14 Another common practice simply
reports the free-energy difference of each stage as the aver-
age of the forward and reverse results,12,15,16 based on the
assumption that the systematic errors in these two directions
of calculation are of the same magnitude but opposite sign.
We have argued that such an assumption is not reliable in
general, and consequently simple averaging is not a good
practice because it is liable to yield an incorrect result.14,17,18

The working equation for a single-stage FEP calculation
can usually be put in the form

e2b~A12A0!5^e2b~U12U0!&0 . ~1!

The ‘0’ and ‘1’ subscripts indicate the two systems of inter-
est;A is the Helmholtz free energy,U is the configurational
energy, andb51/kT with k Boltzmann’s constant, andT the
absolute temperature. The angle brackets indicate an en-
semble average performed on the ‘‘0’’ system, which we call
the reference; the ‘‘1’’ system we call thetarget. Simulation
is performed to sample configuration space with a limiting
distribution proportional toe2bU0 ~for a canonicalNVT en-
semble!. Selection of one or the other system as the reference
gives rise to the forward and reverse implementations of the
FEP calculation.

a!Present address: Department of Physiology, Johns Hopkins University,
Baltimore, MD 21205-2185.
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If one takes the arithmetic average of the free-energy
differences from the forward and reverse calculations to ob-
tain an ‘‘improved’’ estimate for the free-energy difference,
in effect the following formula is being used for the measure-
ment

e2b~A12A0!5S ^e2b~U12U0!&0

^e2b~U02U1!&1
D 1/2

. ~2!

The inappropriateness of this formula can be illustrated
through an extreme but nevertheless relevant example. The
chemical potential of the hard-sphere model is computed as a
FEP between two systems differing in the presence of a
single ‘‘test’’ sphere~or more precisely, in one system the
test sphere does not interact with the others, and in the other
system it interacts as a regular sphere!. If the ‘‘0’’ system is
taken as the one in which the test sphere does not interact
with the others, then the numerator in Eq.~2! is simply the
fraction of the configurations in which the test sphere by
chance does not overlap one of the other spheres~the quan-
tity being averaged is zero in the case of overlap, and unity
for nonoverlap!. A simulation average of the denominator
will always give a value of unity, because in this case the test
sphere samples configurations in which it interacts with the
others, and thus it will never overlap another sphere~but if it
were to sample one of these zero-probability configurations,
the contribution to the average would be infinite, so some-
thing significant is being missed!. Consequently, in effect
this forward/reverse averaging scheme computes the chemi-
cal potential according to

e2b~A12A0!5^e2b~U12U0!&0
1/2, ~3!

which of course is simply incorrect. The error is so obvious
that no one makes the mistake of using forward/reverse av-
eraging in this application. But in more complex systems the
problem is much more subtle, and averaging is routinely ap-
plied without realizing that the same type of error is being
introduced. Part of the problem is the great reproducibility of
the incorrect result. The calculation can have good precision
but poor accuracy.

The remainder of this paper is organized as follows. In
the next section we develop an alternative approach to com-
bining forward and reverse FEP averages, one which does
not exhibit the deficiencies of simple averaging. The method
works through an intermediate system that is formulated
such that its configurations are important to both the 0 and 1
systems. We generalize the approach, and then in Sec. III
show how it connects to Bennett’s method for free-energy
calculations. In Sec. IV we demonstrate the method with two
types of applications, one in which a volume perturbation is
used to calculate the pressure, and another for calculation of
the chemical potential. We conclude in Sec. V.

II. OVERLAP SAMPLING

We have argued that there are situations in which the
better practice is not to mix the results of forward and re-
verse averaging, but to use only one of them.9,17 Then the
direction that gives the correct result is the one that perturbs
from the system of higher entropy to the system of lower

entropy.14 For the chemical potential calculation, this is the
direction in which the test sphere is ‘‘inserted,’’ i.e., goes
from noninteracting to interacting. We adopt this picture
when generalizing to other perturbations, and say that the
higher-to-lower-entropy direction is ‘‘insertion,’’ while ‘‘de-
letion’’ is the direction from lower to higher entropy. We
have hypothesized that FEP should always be performed in
the insertion direction, and that deletion calculations are
likely to be very inaccurate.14,17,18

A schematic is helpful to illustrate the asymmetry of the
insertion/deletion calculations.10,17Figure 1~a! presents a car-
toon depiction of the configuration space. Each point in the
two-dimensional square represents a configuration of the sys-
tem, a point in the 3N-dimensional configuration space~con-
sidering a three-dimensional system ofN monatomic par-
ticles, and ignoring momentum!. Configurations important to
target and reference systems are enclosed in the simple oval
shapes~again, a highly schematic depiction!. The higher-
entropy system is the one with the larger set of important
configurations. For a FEP calculation to yield an accurate
result, representative configurations of both important re-
gions must be sampled in the simulation. In the insertion
calculation, sampling is performed among the configurations
in the large oval, and contributions to the average are made
whenever configurations in the small oval are encountered

FIG. 1. A schematic depiction of the configuration spaceG. The oval shapes
show ~abstractly! the important configurations for the 0 and 1 systems, as
indicated.~a! The important configurations of the lower-entropy system is
wholly contained in the higher-entropy system;~b! the important configura-
tions of the 0 and 1 systems overlap, but one does not form a subset of the
other; the intermediate systemW is formulated such that its important con-
figurations are formed from the overlap of the configurations important to 0
and 1.
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by chance~e.g., the test sphere happens not to overlap an-
other sphere!. The barrier to sampling these configurations is
entropic; it is a matter of when they are encountered by
chance. In the deletion calculation, sampling is performed
among the configurations in the small oval. The barrier to
sampling the other configurations is energetic; moreover, the
contribution from the unsampled configurations increases in-
versely with sampling probability~e.g., an infinite contribu-
tion from the zero-probability configurations in which the
interacting test-sphere overlaps another sphere!.

The argument for using FEP in only the insertion direc-
tion assumes that the important configuration spaces relate to
each other as shown in Fig. 1~a!. That is, configurations im-
portant to the low-entropy system form asubsetof the con-
figurations important to the high-entropy system. This situa-
tion holds for the hard-sphere chemical-potential calculation,
and is probably true for many other perturbation systems as
well. However, it is difficult to know for sure whether two
systems relate this way. Even in situations where the subset
relation holds, application of FEP is complicated by the need
to know which is the higher-entropy and which is the lower-
entropy system.14 It would be valuable if one could proceed
with a calculation without having to be so careful in analyz-
ing the nature of the two systems.

To motivate the direction we take, consider the
configuration-space diagram presented in Fig. 1~b!. Here the
two systems of interest do not exhibit the subset relation for
their set of important configurations. Consequently there is
no single-stage FEP calculation that will yield an accurate
result for the difference in free energies of these systems.
However, their important configurations do overlap. Of
course, the configurations in the overlap region are a subset
of the important configurations of both systems. Conse-
quently we can expect a single-stage FEP calculation to be
effective in calculating the free-energy difference between
the reference and a systemW in which only these overlap
configurations are important. We can reasonably expect to
construct such a system by defining its Hamiltonian as the
average of the Hamiltonians of the two systems of interest.
Considering just the configurational energy, we define

UW5 1
2~U11U0!. ~4!

We then compute the overall free-energy difference by stag-
ing two intermediate FEP calculations, 0→W and 1→W,
thus

e2b~A12A0!5
e2b~AW2A0!

e2b~AW2A1! . ~5!

Then combining Eqs.~1!, ~4!, and ~5! we have the final
working formula

e2b~A12A0!5
^e2b~U12U0!/2&0

^e2b~U02U1!/2&1
. ~6!

The proposed formula has a strong similarity to the
flawed formula given in Eq.~2!, but the differences are cru-
cial. To illustrate, we need consider only the hard-sphere
chemical potential calculation. In Eq.~6! the numerator
again will yield the fraction of configurations in which the
test sphere by chance does not overlap another sphere, while

the denominator is again unity. But the factor of1
2 has al-

ready been applied, so when the averages are combined the
correct result is recovered.

We can apply an analysis of the accuracy to better un-
derstand the behavior of this calculation, and to investigate
whether theW system can be defined differently to improve
the accuracy further. To this end let us generalize the defini-
tion of Eq. ~4! by defining a weighting functionw(u) in
terms of the energy differenceu[U12U0 such thatUW5
2kT ln w(u)1(U11U0)/2; it is simple to show that the free-
energy difference can be given generally

e2b~A12A0!5
^w~u!e2bu/2&0

^w~u!e1bu/2&1
~7!

for which Eq.~6! obviously arises as the special casew(u)
[1.

We define accuracy as the difference between the most
likely outcome ~the mode of the distribution of measured
values obtained by many independent ensemble averages!
and the correct outcome. For evaluating the reliability of FEP
calculation results, accuracy is of greater concern than the
precision, which is analyzed in terms of the variance of the
distribution of measured values. If the result of a FEP calcu-
lation is inaccurate, usually the measurement of the variance
is inaccurate too, indicating a smaller error—greater
confidence—than warranted. Bennett’s method~discussed
below! follows a line similar to the one we have taken so far,
except it optimizes the free-energy calculation by minimiz-
ing the variance with respect tow(u). We will consider in-
stead an optimization of the accuracy.

FEP averages can be written in terms of one-dimensional
integrals of the energy differenceu. Distribution functions
f (u) andg(u) are defined as the normalized probability den-
sities for observing the energy differenceu when simulating
the 0 and 1 systems, respectively. These distributions are
related6,19

g~u!ebu5 f ~u!eb~A12A0!. ~8!

To model FEP inaccuracy, we assume that the simulation
samples thef and/org distributions perfectly, but only be-
tween the maximum and minimum values ofu encountered
in the simulation.17 Inaccuracy arises from the neglect of the
contributions coming from the tails of the distribution. As the
simulation proceeds, the extreme values ofu move further
out into the tails, the neglected region becomes smaller, and
the accuracy improves.

For single-direction, single-stage FEP calculations, we
have shown that this~fractional! error is given simply by the
area under the conjugate distribution above or below the
limit energy. For example, if sampling theg distribution,
some maximum valueug is encountered in a finite-length
simulation. Then the fractional error in the measurement is
the integral off for u.ug . If f and g do not have a large
amount of overlap, this error is much or all of the area under
f, and is substantial. In contrast, the error from poor sampling
of the tails when applying Eq.~6! is, approximately

2979J. Chem. Phys., Vol. 118, No. 7, 15 February 2003 Free-energy perturbation



b~A12A0!err5
*

2`
uf duw~u!@ f ~u!g~u!#1/22*ug

` duw~u!@ f ~u!g~u!#1/2

*2`
` duw~u!@ f ~u!g~u!#1/2 . ~9!

Thus the error is instead given in terms of the area of the
productof the distributions. This is an important distinction
from the one-way average. Naturally, one of the distributions
will always be small beyond its most extremely sampled
energy so the error integrals have an automatic tendency to
be small. Moreover, Eq.~9! shows that errors from inad-
equate sampling in the two ensemble averages will tend to
cancel each other@which is also the tendency when using Eq.
~2!#. Nevertheless, the method does have limitations, and like
all FEP techniques, it cannot produce a reliable result if the
distributions do not have some degree of overlap~insuffi-
cient overlap leads the denominator in the error term to be-
come small!.

Within this model, the simplest way to minimize the
inaccuracy is to set the weighting functionw(u) to zero for
u,uf andu.ug . Then the error vanishes completely. How-
ever, the only way to do this is to investigate the energy
distributions, which puts the method into a different class of
techniques. Alternatively we can apply a Gaussian-like
weighting function that emphasizes the contributions from
the region of overlap and diminishes that from the tails. This
in fact is what is done by Bennett’s method.5

III. BENNETT’S METHOD

Beginning from an equation very similar to Eq.~7!, Ben-
nett selectedw(u) to minimize the variance of the FEP av-
erage. Bennett is able to take the analysis to completion,
specifying exactly the form ofw(u), because the weighting
function does not influence the sampling. Optimization of
w(u) for methods such as umbrella sampling, where the
weighting function affects the sampling of configurations, is
much more difficult and cannot be done with the generality
of Bennett’s optimization.

Without using the same language as employed here,
Bennett also addressed the issue of accuracy of FEP calcula-
tions, where he considers the ‘‘small sample regime.’’ He
points out that his algorithm provides a useful estimate of the
free-energy difference in cases in which the tails of the dis-
tributions~using the present language! are not well sampled.
He also notes that in this case the confidence limits on the
average are not adequately represented by the spread among
independent estimates, i.e., accuracy is more of a concern
than precision.

We can make the connection to Eq.~7! by recognizing
that in Bennett’s method the weighting function is given by a
hyperbolic secant function:

w~u!51/cosh@b~u2C!/2#, ~10!

whereC is a constant selected to minimize the variance of
the free-energy measurement, which prescribes that it equal
the free-energy difference being measured:C5DA. This
choice puts the zero of the cosh argument at the value ofu
where f and g are equal, i.e., where they cross each other

@from Eq. ~8!, f 5g when u5DA]. This of course is the
region of greatest overlap and, appropriately, Bennett’s
method gives it the maximum weight. An illustration of thef
andg distributions and the Bennett weighting is given in Fig.
2.

As is well known, Bennett’s method can be applied us-
ing any value ofC, and in principle will give a correct result
regardless. Selection of the optimal value requires knowl-
edge of the free energy being measured, which implies itera-
tion, or more simply that a survey of averages for differentC
values be taken, and the optimum selected self-consistently.
Bennett’s requirement to tune a single scalar quantity is a
modest imposition. Still, this complication seems to hinder
the broad application of the technique, and among the quick-
and-dirty approaches to FEP calculations, the ill-advised
forward-and-reverse averaging@Eq. ~2!# sees much wider
use. Thus the advantage of Eq.~6!, which combines forward
and reverse averages in a much more appropriate way, is that
it can be applied with the same effort that is used to collect
other ensemble averages—it abandons attempts to optimize
for minimum variance and thereby removes any prescription
for tweaking the implementation. It is likely that Eq.~10!
will do even better, but the question is, how important is the
selection ofC to the quality of the result? Must we apply the
full optimization routine to get a result that improves on
single stage insertion, or on Eq.~6!? We are interested in this
question from the standpoint of the accuracy of the calcula-
tion.

FIG. 2. Typical energy distributionsf (u), g(u) for forward and reverse
perturbations, superimposed with the optimal Bennett weighting function,
w(u). The peak inw is located at the value ofu where f 5g.
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IV. APPLICATIONS

A. Calculating the pressure

Free-energy perturbation can be used as a method for
calculation of the pressure. Harismiadiset al.20 described a
method of this type, which is based on the relationbP5
2(]bA/]V)T,N'2@bA(V1DV)2bA(V)#/DV, where P
and V are the pressure and volume of the system, respec-
tively. Thus we perform FEP calculations to evaluate the
change in free energy with a small perturbation in the vol-
ume. In principle, we need to perform two simulations, one
of the system of volumeV perturbed to volumeV1DV, and
a complementary one for a system of volumeV1DV per-
turbed to volumeV. We consider an approximation in which
the V1DV→V calculation is given by a simulation of a
system of volumeV perturbed to one of volumeV2DV. In
this case the pressure is given by

bP'
N

V
1

1

DV
lnF ^exp@2b~U~V1DV!2U~V!!/2#&V

^exp@2b~U~V2DV!2U~V!!/2#&V
G .

~11!

Here, we have applied the usual scaling of coordinates, such
that a change in the volume causes all molecule positions to
be scaled proportionately, giving rise to the dependence of
the configurational energyU on volume indicated by the for-
mula. The transformation also gives rise to the additive ideal-
gas contributionN/V.

We consider application to the square-well model, which
is interesting because the FEP calculation is asymmetric. Per-
turbations that expand the system volume will not register
the contribution to the pressure from the repulsive core.
However, it will be effective in gauging the attractive contri-
butions to the pressure, because it will cause molecules near
the outer edge of the well separation to come apart, giving
rise to a measurable change in the energy. Compression per-
turbations will measure the repulsive contribution, but will
be less effective at getting the attractive part because fewer
spheres will lie just outside the well cutoff and thus there
will not be as much to sample.

In this manner we calculated the pressure of al51.75
square-well system, wherel is the diameter of the attractive
well ~all quantities and results are given in units of the re-
pulsive core diameters and well depth«!. Simulations of
N5256 particles were performed in the canonical (NVT)
ensemble. We selected conditions over a range of tempera-
tures corresponding to saturated liquid and vapor phases, as
reported by Vegaet al.21 Simulations proceeded beyond a
period of equilibration for approximately 0.73106 Monte
Carlo cycles, with one volume perturbation in each direction
~compression and expansion! attempted in each cycle. The
free-energy volume change perturbation was 0.05%.

The data of Vegaet al.were taken using Gibbs ensemble
simulations, while our results are measured in independent
NVT simulations of each phase. Consequently the compari-
son with the literature data is imperfect, a situation further
complicated by recent data of del Rioet al.22 which indicates
some imperfections in the Vegaet al. results. Our point in
this study is to compare the performance of the methods

under consideration. We use the literature data only to ensure
the plausibility of our calculations. In the figure caption we
describe how we examined possible sources of discrepancies
in our calculation.

FIG. 3. PressureP* ~in reduced units, defined asPs3/«) measured by
free-energy volume perturbation in a system of 256 square-well particle of
well diameterl51.75, given as a function of temperatureT* ~defined as
kT/«). Data are measured at the saturated liquid~a! and vapor~b! densities
for the given temperature~as given in Ref. 21!. The methods used are as
follows: single-stage Widom Eq.~1! for a small compression of the system
~diamonds! ~all other methods combine compression and expansion trials!;
overlap sampling, Eq.~6! ~triangles!; nonoptimal Bennett’s method, Eqs.~7!
and ~10!, with C50 ~squares!; optimal Bennett’s method~circles! and
simple averaging, Eq.~2! ~crosses! @for ~a! these data are at aboutP* 5
21.0, and are not visible on the plot#. The error bars represent a 67%
confidence limit based on the variance of block averages. Confidence limits
on the literature values of Vegaet al. ~Ref. 21! are shown in two ways. The
reported error bars from Ref. 21 are indicated; also, filled flat diamonds
show pressures computed here~using the nonoptimal Bennett’s method!
using densities at the top and bottom of the confidence limits of density
reported in Ref. 21. The latter calculation shows how the imprecision in the
density results of Ref. 21 contributes to the uncertainty in our pressure
comparison. Some of the data are shifted left or right a small amount to
permit the error bars to be discerned—each cluster of points is measured at
the same temperature~literature-data series is not shifted and indicates tem-
perature of surrounding cluster!. Finally, the recent vapor-pressure data of
del Rio et al. ~Ref. 22! are shown.
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Results are presented in Figs. 3 and 4. All methods per-
form comparably well, with the important exception of the
simple averaging technique@Eq. ~2!#, which not surprisingly
gives an extremely poor result. This combining method gives
inadequate weight to the contribution from the repulsive
core, and consequently the pressure is consistently low by a
large amount. Among the other methods, none stand out as
exceptionally better than the others, while all give confidence
limits smaller than the literature data~though perhaps not
significantly so!. The rough equivalence of these methods
might be connected to the small size of the perturbation be-
ing performed. Even though the free-energy change is ampli-
fied when dividing by the volume change, this magnification
does not bring out any differences in the quality of the data.
Such a small change does not require the accuracy- or
variance-enhancing features of Bennett’s method. This out-
come is further reinforced in examination of the convergence
of the averages, Fig. 4. Simple averaging is always off the
scale, but the other methods are indistinguishable. We note
that the failure of our ‘‘saturation’’ pressure to consistently
increase with temperature is an indication of possible prob-
lems in the saturation density data of Vegaet al.

B. Calculating the chemical potential

The chemical potential calculation was discussed in the
Introduction. It is a FEP in which the perturbation systems
differ in the presence of a single molecule. In principle, the
overlap-sampling and Bennett’s methods should be applied
by performing a simulation ofN11 molecules perturbed by
deleting one of them, and performing another simulation of
N molecules and perturbing by adding another at random,
thus

e2bmr5
^w~u!e2bu/2&N

^w~u!e1bu/2&N11
, ~12!

where m r5m2kT ln r is the residual chemical potential
~above an ideal gas of densityr!, andu is the energy of the
test molecule when it interacts with all the others. It is pos-
sible to proceed as we did with the pressure calculation, and
approximate the two stages by inserting and deleting a mol-
ecule from theN-particle system~as long as the molecule is
not too large and the density not too high!; we did not do that
in this study, and instead performed separate simulations of
systems ofN andN11 particles, as prescribed by Eq.~12!.

We used the methods described above to compute the
residual chemical potential of a Lennard-Jones~LJ! system.
The simulations are conducted at theNVT ensemble with
system densitiesrs350.9 and 0.8, andkT/«51.0 ~wheres
and « are the LJ parameters!. In both densitiesN5108 is
used and no long-range correction is applied. The free-
energy perturbation sampling is conducted once at the end of
each MC simulation cycle, which containsN random trans-
lational displacement moves. An equilibration run of 2
3106 cycles is carried out before starting the FEP sampling.
We examine the convergence of the different methods in Fig.
5, and compare with the value given by the equation of state
of Johnsonet al.23 The simple averaging method Eq.~2! pro-
duces clearly unacceptable results, showing no sign of con-
verging to the correct value, while presenting error estimates

FIG. 4. Cumulative average of the pressure of al51.75 square-well system
at state conditionsr* 50.537,T* 51.55. Some of the data are shifted left or
right a small amount to permit the error bars to be discerned. The data for
simple averaging are not visible on the plot.

FIG. 5. Cumulative average of the chemical potential of Lennard-Jones
system computed using different methods as a function of sampling size
~number of perturbation trials!. The reduced density~in LJ units! of the
systems are 0.9 and 0.8 as indicated. The methods used are as follows:
single-stage Widom, Eq.~1! for insertion of a particle~circles!; overlap
sampling, Eq.~6! ~triangles!; nonoptimal Bennett’s method, Eqs.~7! and
~10!, with C50 ~squares!; and simple averaging, Eq.~2!. The error-bar
represents 67% a confidence limit based on the variance of block averages.
The chemical potential according to the equation of state~EOS! of Johnson
et al. ~Ref. 23!, shifted to remove the long-range contribution for compari-
son with the simulation data, is presented at the~arbitrary! abscissa value of
33106. The small discrepancy between the EOS and the converged values
can arise from system-size effects and the limitations of the semiempirical
EOS.
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that indicate~falsely! an increasingly precise result. Even
single-stage Widom’s method,24 early in the simulation, pre-
sents error bars that are smaller than the inaccuracy of the
calculation; but it also displays an acceptable degree of con-
vergence to the correct value as the simulation proceeds.
Overlap sampling Eq.~6! and Bennett’s method Eq.~10!
~using a nonoptimal valueC50), both show good results,
with Bennett’s yielding a correctly converged result very
quickly, already at the beginning of the plot. The free-energy
difference is rather close to zero, relative to the extremes of
energy that are observed in the insertion and deletion, so in
this case the arbitrary selection ofC50 is not too far from
the optimum value.

Now we consider the chemical potential of a water
model, which is a much more difficult average to measure
due to the large entropy change of the perturbation~roughly
7k; the free-energy change is about 10kT, but this is of less
relevance to the difficulty of the calculation!. We expect a
hard time for the direct FEP measurement and want to use
this calculation to examine the performance of the simple
overlap and Bennett’s methods. We choose the SPC model25

for water and apply a 6 Å cutoff for interaction potential,
with no long-range correction of any type. The simulation is
conducted in cubic simulation box with periodic boundary
condition applied. The system density isr51.0 g/cm3, and
two temperatures are examined:T5298 K and 373 K. These
settings are similar to those of Hermanset al.26 and Quintana

and Haymet.27 In these previous studies, thermodynamic in-
tegration and much lengthier multistage methods were ap-
plied. The reported chemical potentials are241.77 for 298 K
and235.2 for 373 K. We make these and our results dimen-
sionless with the LJ« for the O-O interactions~650.4 J/mol!,
and they are reported in excess of an ideal gas at the same
density. In this study we useN5256 water molecules, which
is different from the literature; this difference would slightly
offset the chemical potential, but the literature values should
still provide a reasonable reference. The definition of sam-
pling size is the same as that of LJ simulation, except that
each simulation cycle also containsN random rotational MC
moves. The configuration is pre-relaxed with 83106 MC
cycles before proceeding with the FEP sampling.

Figures 6 and 7 present data from the different methods
at T5298 K and 373 K, respectively, similar to that given in
Fig. 5 for LJ. Bennett’s method was applied in both opti-
mally (C5241.77,235.2,resp.) and nonoptimally (C50),
and these applications provide the only acceptable results.
All other methods—Widom’s, simple overlap sampling, and
simple averaging—provide values that differ from the cor-
rect chemical potential by an amount significantly greater
than indicated by their confidence limits. In contrast, Ben-
nett’s method, particularly with the optimalC, has converged
correctly almost by the beginning of the plot. There remains
a small but significant difference between optimal and non-
optimal Bennett’s method in Fig. 7. This outcome highlights
the insidious nature of the inaccuracy of these calculations. It
is likely that the optimal-Bennett’s method is providing the
more accurate result. In principle it is a better method, and
it is in better agreement with the literature value. The non-
optimal form is not bad, and in particular it shows pretty
good accuracy, at least in comparison to the other methods—
only the precision of the calculation is noticeably compro-
mised by the use an a less-than-optimal value ofC. The

FIG. 6. Cumulative average of the chemical potential of SPC water at 298
K, as a function of sampling length~simulation cycles!; results are made
dimensionless with the LJ epsilon for the O-O interactions~650.4 J/mol!,
and are in excess of an ideal gas at the same density. The methods used are
indicated by the symbols as follows: overlap sampling, Eq.~6! ~triangles!;
nonoptimal Bennett’s method, Eqs.~7! and ~10!, with C50 ~squares!; op-
timal Bennett’s method withC5241.77 ~circles!; standard, single-stage
Widom insertion~diamonds!; and simple averaging, Eq.~2! ~crosses!. The
reported value~241.77! in the previous studies~Refs. 26, 27! is indicated
by the dashed line. The error-bars represent 67% confidence limits~they are
barely visible—about the same size as the symbols—for the optimal Ben-
nett’s method!; the reported confidence limits from the previous studies is
indicated on either end of the dashed line. Some data series are shifted
slightly to the right to permit error bars to be discerned.

FIG. 7. Same as Fig. 6, except temperature is 373 K. Literature value~Ref.
27! of chemical potential under similar simulation conditions is235.2 in
reduced units.
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accuracy and precision of the optimized Bennett’s method is
outstanding.

V. CONCLUSIONS

The practice of simple forward-and-reverse averaging
@Eq. ~2!# is, at best, highly inefficient. It may provide accu-
rate results only if the perturbation can be made very small
through the introduction of numerous intermediate stages in
the overall free-energy difference calculation. Yet even then,
when used with all its inefficiencies, the method is prone to
inaccuracy that is hard to detect. As standard practice it re-
ally should be considered undesirable—perhaps even unac-
ceptable.

Equation ~6! is no more complicated than the widely
used FEP ensemble averages@Eq. ~1! or ~2!#, yet it is much
safer to use. It does not demand prior knowledge of the rela-
tive entropies of the systems of interest, and it does not even
require that the important regions of phase space satisfy a
subset relation. The only disadvantage in Eq.~6! is that it
does require FEP averages sampled in both of the systems of
interest. In practice this is hardly an issue. Unless one is
absolutely sure that Eq.~1! is being applied in the insertion
direction, and that the subset relation@Fig. 1~a!# is satisfied
@and not Fig. 1~b!#, then one should perform both averages to
be sure the result is not inaccurate. As shown here, in some
instances both averages can be obtained—albeit
approximately—in a single simulation. In many cases one is
traversing a range of values of the perturbation parameter,
and the opportunity to perform both averages arises natu-
rally. The double-wide sampling method15 attempts to ex-
ploit this situation, but it suffers from the same flaw as the
forward-and-reverse averaging, and it too can be easily im-
proved using the combining methods advocated here.

Going further, application of Bennett’s method, even
without full optimization, produces marked improvement
over all other methods of combining forward and reverse
averages. The use of a suboptimal value ofC seems to be
less detrimental to the accuracy of the calculation than it is to
the precision. Given that the accuracy is very hard to gauge
without detailed calculations, any low-cost step taken to en-
sure a higher-accuracy calculation is worthwhile. Moreover,
with just a bit of thought, reasonable bounds can be placed
on the free-energy difference, and this can be used to guide
in the selection of an appropriate~near optimal! value ofC.
Bennett’s method applied in optimal form produces very im-
pressive results, and should be used if at all possible. Barring
this, we advocate strong consideration of overlap sampling,
Eq. ~6!, or some other nonoptimal form of Bennett’s method
as methods of choice for basic FEP calculations.
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