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We consider the accuracy of several methods for combining forward and reverse free-energy
perturbation averages for two systeffebeled 0 and )1 The practice of direct averaging of these
measurements is argued as not reliable. Instead, methods are considered of tig% Agrh)

= —In[{(w(u)exp(—Bu/2))o /[{w(u)exp(+Bu/2)),], where A is the free energyB=1KkT is the
reciprocal temperature,= U, — U, is the difference in configurational energy(u) is a weighting
function, and the angle brackets indicate an ensemble average performed on the system indicated by
the subscript. Choices are considered in whigfu)=1 and 1/cosi{u—C)/2]; the latter being
Bennett's method wher€ is a parameter that can be selected arbitrarily, and may be used to
optimize the precision of the calculation. We examine the methods in several applications:
calculation of the pressure of a square-well fluid by perturbing the volume, the chemical potential
of a high-density Lennard-Jones system, and the chemical potential of a model for water. We find
that the approaches based on Bennett's method weighting are very effective at ensuring an accurate
result(one in which the systematic error arising from inadequate sampling is less than the estimated
confidence limits and that even the selectiow(u)=1 offers marked improvement over
comparable methods. We suggest that Bennett’s method is underappreciated, and the benefits it
offers for improved precision ang@specially accuracy are substantial, and therefore it should be
more widely used. ©2003 American Institute of Physic§DOI: 10.1063/1.1537241

I. INTRODUCTION versiond®!? of this approach include umbrella sampftig
and Bennett’s method.Because multistage methods have
Knowledge of free energy is central to understanding ofFEp as their elementary component, they can suffer from the
the behavior of many thermophysical and chemical prosame problems as single-stage FEP if they are not used
cesses, including phase and reaction equilibria, molecular agyisely. One practice calls for using as many stages as pos-
sociation, thermodynamic stability, rare-event kinetics, bindsijp|e to minimize the observed forward/reverse asymmetry in
ing affinity, and so orl. Free-energy calculations almost each. This procedure can yield a correct overall difference,
always involve computation of free-enerdifferencesmea-  pyt it is very inefficient:* Another common practice simply
sured between two systems that differ in thermodynamigeports the free-energy difference of each stage as the aver-
state, Hamiltonian, or in the form of a constraint. The free-age of the forward and reverse resdfts>*®based on the
energy difference can be computed in many ways, somgssumption that the systematic errors in these two directions
closely related. Categories include free-energy perturbatiogf calculation are of the same magnitude but opposite sign.
(FEP and other nonequilibrium methodsthermodynamic  \we have argued that such an assumption is not reliable in
integration’ parameter-hopping, histograms”” and adia-  general, and consequently simple averaging is not a good
batic switching? The options are many, yet FEP remains apractice because it is liable to yield an incorrect re&tf:8

popular choice because it is very simple to apply, and in its  The working equation for a single-stage FEP calculation
basic form it involves no extra calculations on systems thatan usually be put in the form

are otherwise of no intrinsic interest. However, it is prone to
inaccuracy, and if applied carelessly it can give results that
are highly reproducible but incorrett? Symptoms of the The ‘0’ and ‘1’ subscripts indicate the two systems of inter-
problem are seen by performing the calculation in two direcest; A is the Helmholtz free energy is the configurational
tions, arbitrarily designated “forward” and “reverse.” The energy, ang8=1/kT with k Boltzmann’s constant, arifithe
two calculations should in principle yield the same result, butabsolute temperature. The angle brackets indicate an en-
usually they differ:* semble average performed on the “0” system, which we call
A way to improve accuracy involves staging the FEPthe reference the “1” system we call thetarget Simulation
calculation so that the overall difference is computed as thés performed to sample configuration space with a limiting
sum of two or more smaller differences. Popular two-stagefistribution proportional t@~#Yc (for a canonicaNVT en-
semblg. Selection of one or the other system as the reference
present address: Department of Physiology, Johns Hopkins Universin@iVeS rise to the forward and reverse implementations of the
Baltimore, MD 21205-2185. FEP calculation.

e AA—A) = (g~ BU1=Uo)y (1)

0021-9606/2003/118(7)/2977/8/$20.00 2977 © 2003 American Institute of Physics



2978 J. Chem. Phys., Vol. 118, No. 7, 15 February 2003 Lu, Singh, and Kofke

If one takes the arithmetic average of the free-energy
differences from the forward and reverse calculations to ob- (@)
tain an “improved” estimate for the free-energy difference,
in effect the following formula is being used for the measure-
ment

e BAL=Ag =

2

(e~ AUL~ Vo) | 172
RN

The inappropriateness of this formula can be illustrated
through an extreme but nevertheless relevant example. The
chemical potential of the hard-sphere model is computed as a
FEP between two systems differing in the presence of a
single “test” sphere(or more precisely, in one system the
test sphere does not interact with the others, and in the other (b)
system it interacts as a regular sphetethe “0” system is
taken as the one in which the test sphere does not interact
with the others, then the numerator in E8) is simply the
fraction of the configurations in which the test sphere by
chance does not overlap one of the other sph@hesquan-
tity being averaged is zero in the case of overlap, and unity
for nonoverlap. A simulation average of the denominator
will always give a value of unity, because in this case the test
sphere samples configurations in which it interacts with the
others, and thus it will never overlap another spHéré if it T
were to sample one of these zero-probability configurations,
the contribution to the average would be infinite, so some-
thing significant is being misseédConsequently, in effect FIG. 1. A schematic eriction of thg confi'guration sphc&he oval shapes
this forward/reverse averaqina scheme computes the che erc_)w(abstractIy the important C(_)nflgu_ratlons for the 0 and 1 systems, as
. ] ging p n"1d|t:ated.(a) The important configurations of the lower-entropy system is

cal potential according to wholly contained in the higher-entropy systefb) the important configura-

efB(A17A0)= <e*/3(U1*UO)>3/27 (3) tions of the 0 and 1 systems overlap, but one does not form a subset of the

other; the intermediate systeWd is formulated such that its important con-

. L . . . figurations are formed from the overlap of the configurations important to 0
which of course is simply incorrect. The error is so obvious,,q 1.

that no one makes the mistake of using forward/reverse av-
eraging in this application. But in more complex systems the
problem is much more subtle, and averaging is routinely apentropy'* For the chemical potential calculation, this is the
plied without realizing that the same type of error is beinggjrection in which the test sphere is “inserted,” i.e., goes
introduced. Part of the problem is the great reproducibility offom noninteracting to interacting. We adopt this picture
the incorrect result. The calculation can have good precisioghen generalizing to other perturbations, and say that the
but poor accuracy. higher-to-lower-entropy direction is “insertion,” while “de-
The remainder of this paper is organized as follows. Inetion” is the direction from lower to higher entropy. We
the next section we develop an alternative approach to conhaye hypothesized that FEP should always be performed in
bining forward and reverse FEP averages, one which doage insertion direction, and that deletion calculations are
not exhibit the deficiencies of simple averaging. The methoqike|y to be very inaccurat&" 1718
works through an intermediate system that is formulated A schematic is helpful to illustrate the asymmetry of the
such that its configurations are important to both the 0 and jysertion/deletion calculationg:” Figure Xa) presents a car-
systems. We generalize the approach, and then in Sec. Hhon depiction of the configuration space. Each point in the
show how it connects to Bennett's method for free-energyyo-dimensional square represents a configuration of the sys-
calculations. In Sec. IV we demonstrate the method with twgem 5 point in the Bl-dimensional configuration spateon-
types of applications, one in which a volume perturbation issidering a three-dimensional system Mfmonatomic par-
used to calculate the pressure, and another for calculation gtles, and ignoring momentumConfigurations important to
the chemical potential. We conclude in Sec. V. target and reference systems are enclosed in the simple oval
shapes(again, a highly schematic depictionThe higher-
entropy system is the one with the larger set of important
configurations. For a FEP calculation to yield an accurate
We have argued that there are situations in which theesult, representative configurations of both important re-
better practice is not to mix the results of forward and re-gions must be sampled in the simulation. In the insertion
verse averaging, but to use only one of thethThen the  calculation, sampling is performed among the configurations
direction that gives the correct result is the one that perturb® the large oval, and contributions to the average are made
from the system of higher entropy to the system of lowerwhenever configurations in the small oval are encountered

Il. OVERLAP SAMPLING
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by chance(e.g., the test sphere happens not to overlap arthe denominator is again unity. But the factor phas al-
other sphere The barrier to sampling these configurations isready been applied, so when the averages are combined the
entropic; it is a matter of when they are encountered bycorrect result is recovered.
chance. In the deletion calculation, sampling is performed We can apply an analysis of the accuracy to better un-
among the configurations in the small oval. The barrier toderstand the behavior of this calculation, and to investigate
sampling the other configurations is energetic; moreover, thevhether thewW system can be defined differently to improve
contribution from the unsampled configurations increases inthe accuracy further. To this end let us generalize the defini-
versely with sampling probabilitye.g., an infinite contribu- tion of Eq. (4) by defining a weighting functiorw(u) in
tion from the zero-probability configurations in which the terms of the energy differenae=U,— U, such thatU,,=
interacting test-sphere overlaps another sphere —kTInw(u)+(U;+Ug)/2; it is simple to show that the free-

The argument for using FEP in only the insertion direc-energy difference can be given generally
tion assumes that the important configuration spaces relate to
each other as shown in Fig(d. That is, configurations im- — Bu/i2

A (W(w)e” P

portant to the low-entropy system formsabsetof the con- e PR = (7
figurations important to the high-entropy system. This situa- (w(u)e )
tion holds for the hard-sphere chemical-potential calculation,
and is probably true for many other perturbation systems afr which Eq.(6) obviously arises as the special casgu)
well. However, it is difficult to know for sure whether two =1.
systems relate this way. Even in situations where the subset We define accuracy as the difference between the most
relation holds, application of FEP is complicated by the needikely outcome (the mode of the distribution of measured
to know which is the higher-entropy and which is the lower-Values obtained by many independent ensemble averages
entropy Sys'[en:lf_1 It would be valuable if one could proceed and the correct outcome. For evaluating the rellablllty of FEP

with a calculation without having to be so careful in analyz-calculation results, accuracy is of greater concern than the
ing the nature of the two systems. precision, which is analyzed in terms of the variance of the

To motivate the direction we take, consider the distribution of measured values. If the result of a FEP calcu-

configuration-space diagram presented in Fitp).1Here the lation is inaccurate, usually the measurement of the variance
two systems of interest do not exhibit the subset relation fotS inaccurate too, indicating a smaller error—greater
their set of important configurations. Consequently there igonfidence—than warranted. Bennett's methialiscussed

no single-stage FEP calculation that will yield an accuratd>elow follows a line similar to the one we have taken so far,
result for the difference in free energies of these system$Xxcept it optimizes the free-energy calculation by minimiz-
However, their important configurations do overlap. Ofing the variance with respect to(u). We will consider in-
course, the configurations in the overlap region are a subsétead an optimization of the accuracy.

of the important configurations of both systems. Conse- FEP averages can be written in terms of one-dimensional
quently we can expect a single-stage FEP calculation to b@tegrals of the energy differenae Distribution functions
effective in calculating the free-energy difference betweerf (U) andg(u) are defined as the normalized probability den-
the reference and a systewt in which only these overlap Sities for observing the energy differensavhen simulating
configurations are important. We can reasonably expect t§e 0 and 1 systems, respectively. These distributions are
construct such a system by defining its Hamiltonian as théelate *

average of the Hamiltonians of the two systems of interest.

Considering just the configurational energy, we define g(u)efU=f(u)efh1=Ao), (8)

Uw=3(U1+Uy). (4)
We then compute the overall free-energy difference by stagT0 model FEP inaccuracy, we assume that the simulation
ing two intermediate FEP calculations, and 1oW, samples thd and/org distributions perfectly, but only be-

tween the maximum and minimum valueswg&ncountered

thus in the simulatiort’” Inaccuracy arises from the neglect of the
P e AlAw=Ao) contributions coming from the tails of the distribution. As the
€ LU= e PAW-AD " (5) simulation proceeds, the extreme valuesuaihove further

o ] out into the tails, the neglected region becomes smaller, and
Then combining Eqs(1), (4), and (5) we have the final the accuracy improves.

working formula For single-direction, single-stage FEP calculations, we
<e7,8(U17U0)/2>0 have shown that thidractiona) error is given simply by the
e*ﬂ(Aer>:W. (6) area under the conjugate distribution above or below the
1

limit energy. For example, if sampling thg distribution,
The proposed formula has a strong similarity to thesome maximum valuel, is encountered in a finite-length
flawed formula given in Eq(2), but the differences are cru- simulation. Then the fractional error in the measurement is
cial. To illustrate, we need consider only the hard-spherghe integral off for u>uq. If f andg do not have a large
chemical potential calculation. In Ed6) the numerator amount of overlap, this error is much or all of the area under
again will yield the fraction of configurations in which the f, and is substantial. In contrast, the error from poor sampling
test sphere by chance does not overlap another sphere, whié the tails when applying Ed6) is, approximately
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£, duwu)[£(u)g(u) ¥ 7 duw(u) f(u)g(u)]*?
7 duw(u [ f(u)g(u) ]2 ' ©

B(A1=Ag)en=

Thus the error is instead given in terms of the area of théfrom Eq. (8), f=g when u=AA]. This of course is the
productof the distributions. This is an important distinction region of greatest overlap and, appropriately, Bennett's
from the one-way average. Naturally, one of the distributionamethod gives it the maximum weight. An illustration of the
will always be small beyond its most extremely sampledandg distributions and the Bennett weighting is given in Fig.
energy so the error integrals have an automatic tendency t®

be small. Moreover, Eq(9) shows that errors from inad- As is well known, Bennett’s method can be applied us-
equate sampling in the two ensemble averages will tend tghg any value ofC, and in principle will give a correct result
cancel each othg¢which is also the tendency when using Ed. regardless. Selection of the optimal value requires knowl-
(2)] Nevertheless, the method does have limitations, and ||k%dge of the free energy being measured, which |mp||es itera-
all FEP techniques, it cannot produce a reliable result if thgjon, or more simply that a survey of averages for differ@nt

distributions do not have some degree of overlasuffi-  yajues be taken, and the optimum selected self-consistently.
cient overlap leads the denominator in the error term to begennett's requirement to tune a single scalar quantity is a

come small modest imposition. Still, this complication seems to hinder

~ Within this model, the simplest way to minimize the q proad application of the technique, and among the quick-
inaccuracy is to set the weighting functier(u) to zero for  onq gty approaches to FEP calculations, the ill-advised
u<ug andu>ug. Then the error vanishes completely. How- forward-and-reverse averagif&q. (2)] sees much wider

ever, th_e only way to do this is to _investig_ate the energy, qe Thys the advantage of E§), which combines forward
d|str|b_ut|ons, which p_uts the method into a different c_Iass_ Ofand reverse averages in a much more appropriate way, is that
techmques. AItgrnaUver we can apply a Gau.ssmn-hkelt can be applied with the same effort that is used to collect
weighting function that emphasizes the contributions from . _
. N . . other ensemble averages—it abandons attempts to optimize
the region of overlap and diminishes that from the tails. Th|sf0r minimum variance and thereby removes anv prescrioti
in fact is what is done by Bennett's methdd. ) . reby remo Y prescription
for tweaking the implementation. It is likely that E¢LO)
will do even better, but the question is, how important is the
selection ofC to the quality of the result? Must we apply the
Beginning from an equation very similar to E@), Ben-  full optimization routine to get a result that improves on
nett selectedv(u) to minimize the variance of the FEP av- single stage insertion, or on E@)? We are interested in this
erage. Bennett is able to take the analysis to completiorquestion from the standpoint of the accuracy of the calcula-
specifying exactly the form ofv(u), because the weighting tion.
function does not influence the sampling. Optimization of
w(u) for methods such as umbrella sampling, where the
weighting function affects the sampling of configurations, is
much more difficult and cannot be done with the generality 0.4 10
of Bennett's optimization. ‘ A ‘
Without using the same language as employed here, ‘
Bennett also addressed the issue of accuracy of FEP calcula i
tions, where he considers the “small sample regime.” He |
points out that his algorithm provides a useful estimate of the i
free-energy difference in cases in which the tails of the dis- 5 }
I

Ill. BENNETT'S METHOD

~ 0.8
0.3

tributions (using the present languggare not well sampled. © - 06

He also notes that in this case the confidence limits on theg 0.2 -
average are not adequately represented by the spread amor
independent estimates, i.e., accuracy is more of a concerr
than precision.

We can make the connection to E@) by recognizing 0.1 / \
that in Bennett's method the weighting function is given by a \ - 02
hyperbolic secant function: \ f(u)

w(u)=1/coshi B(u—C)/2], (10) 00 — \xﬁ_ 00

whereC is a constant selected to minimize the variance of 0 20 40 60 80

the free-energy measurement, which prescribes that it equa. Perturbation Energy, u (arb. units)

the _free-energy difference being measur€-AA. This FIG. 2. Typical energy distribution§(u), g(u) for forward and reverse
choice puts the zero of th_e cosh argument at the valug of perturbations, superimposed with the optimal Bennett weighting function,
wheref and g are equal, i.e., where they cross each othefw(u). The peak inw is located at the value af wheref=g.

(n)m

\
1
1
1
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IV. APPLICATIONS L 1 1 1
0.16 4 (a) Liquid

A. Calculating the pressure

Free-energy perturbation can be used as a method for 0147

calculation of the pressure. Harismiagisal>° described a 0124
method of this type, which is based on the relatjpR =
—(dBAIV) 1 n=—[BA(V+AV)—BA(V)]/AV, where P
andV are the pressure and volume of the system, respec-
tively. Thus we perform FEP calculations to evaluate the
change in free energy with a small perturbation in the vol-

Pressure, P*
o o
[e=) —
@ [=]
| |

0.06 ——/ = Literature/error -

ume. In principle, we need to perform two simulations, one N Oror Savoiing
of the system of volum¥ perturbed to volum&+ AV, and 0049 O OptmalBemnetts | [°
a complementary one for a system of voluve AV per- 0.02 - o Widom compression | |
turbed to volume/. We consider an approximation in which - - X Simple averaghg
the V+AV—V calculation is given by a simulation of a 0001 | | I o
system of volume/ perturbed to one of volum&—AV. In 1.55 1.60 1.65 1.70
this case the pressure is given by Temperature, T
| | | 1
b N 1 | (exd — B(U(V+AV)—U(V))/2])y (b) Vapor
PP=y* avM (exd — BUNV—AV)— UV 2]y | 0.14

(11)

. . . 0.12 1
Here, we have applied the usual scaling of coordinates, sucl
that a change in the volume causes all molecule positions toa
be scaled proportionately, giving rise to the dependence ofg 0.10 -
the configurational energy on volume indicated by the for-
mula. The transformation also gives rise to the additive ideal-
gas contributiorN/V. 0.08

We consider application to the square-well model, which

is interesting because the FEP calculation is asymmetric. Per-
turbations that expand the system volume will not register
the contribution to the pressure from the repulsive core.
However, it will be effective in gauging the attractive contri- T T T T
butions to the pressure, because it will cause molecules nea 1.85 1.60 1.65 1.70
the outer edge of the well separation to come apart, giving Temperature, T*
rise to a measurable change in the energy. Compression p&iiG. 3. Pressuré* (in reduced units, defined @@o%s) measured by
turbations will measure the repulsive contribution, but will free-energy volume perturbation in a system of 256 square-well particle of
be less effective at getting the attractive part because feweyell diameterA=1.75, given as a function of temperaturé (defined as

spheres will lie just outside the well cutoff and thus therek/2). Data are measured at the saturated liqajcand vapor(b) densities
for the given temperaturéas given in Ref. 2l The methods used are as

will not be as much to sample. follows: single-stage Widom Ed1) for a small compression of the system
In this manner we calculated the pressure of=al1.75  (diamonds (all other methods combine compression and expansion)irials
square-well system, whebeis the diameter of the attractive ©overlap sampling, E6) (triangles; nonoptimal Bennett's method, EqS)
well (all quantities and results are given in units of the re-2nd (10, with C=0 (squares optimal Bennetts methodcircles and
. . . . simple averaging, Eq(2) (crossey [for (a) these data are at aboBtt =
DUIS'Ve core diametes and well depths). Simulations of —1.0, and are not visible on the plotThe error bars represent a 67%
N=256 particles were performed in the canonichlMT) confidence limit based on the variance of block averages. Confidence limits
ensemble. We selected conditions over a range of temperae the literature values of Vegst al. (Ref. 21) are shown in two ways. The

: P orted error bars from Ref. 21 are indicated; also, filled flat diamonds
tures CorrESpondmg to saturated “ql’"d and vapor phases, é?gw pressures computed hedresing the nonoptimal Bennett's method

repprted by V_e_gaet_al. S|mU|at|0r_‘S proceeded beyond a ysing densities at the top and bottom of the confidence limits of density
period of equilibration for approximately 0<Z1L0P Monte  reported in Ref. 21. The latter calculation shows how the imprecision in the

Carlo cycles, with one volume perturbation in each directiordensity results of Ref. 21 contributes to the uncertainty in our pressure

. . comparison. Some of the data are shifted left or right a small amount to
(compressmn and expans)oattempted in each cycle. The permit the error bars to be discerned—each cluster of points is measured at

free-energy volume change perturbation was 0.05%. the same temperatufbterature-data series is not shifted and indicates tem-
The data of Vegat al. were taken using Gibbs ensemble perature of surrounding clusjerFinally, the recent vapor-pressure data of

simulations, while our results are measured in independertte! Rioet al. (Ref. 22 are shown.

NVT simulations of each phase. Consequently the compari-

son with the literature data is imperfect, a situation furtherunder consideration. We use the literature data only to ensure
complicated by recent data of del Réoal?? which indicates  the plausibility of our calculations. In the figure caption we
some imperfections in the Vegat al. results. Our point in  describe how we examined possible sources of discrepancies
this study is to compare the performance of the method& our calculation.

Press
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1 l 1 1 1 i
0.15 ~ - p=0.9
4 -]
i
0.10 - 2
A 3 04
N o
£ 3
@ [neg
[ ~ N I
o s L A S
5 0.8
0.00 —O— Optimal Bennett's = % -1 p=0.
—— Qverlap sampling o = T e -
-1 Non-optimal Bennett's B o ) i
— Simple averaging L —O— Single-stage Widom
-0.05 | g —— Overlap sampling
: T T T T T T 3 £ 34 —1 Non-optimal Bennett's
0 100 200 300 500x10 o —>¢ Simple averaging
Monte Carlo Cycles ® Johnson et al. EOS
g
FIG. 4. Cumulative average of the pressure af-al.75 square-well system %—{\H—_{/%\—%
at state conditionp* =0.537,T* = 1.55. Some of the data are shifted left or R . N : —
right a small amount to permit the error bars to be discerned. The data for 567 5 2 3 4567 . 2 3 458
simple averaging are not visible on the plot. 10 10

Sampling Size

FIG. 5. Cumulative average of the chemical potential of Lennard-Jones
Results are presented in Figs. 3 and 4. All methods peﬁystem computed using different methods as a function of sampling size
. . . (number of perturbation trials The reduced densityin LJ unit9 of the
f(_)rm comparaply well, Wlth the |mporFant exceptlo_n. of the systems are 0.9 and 0.8 as indicated. The methods used are as follows:
simple averaging techniqu&qg. (2)], which not surprisingly  single-stage Widom, Eq(1) for insertion of a particle(circles; overlap
gives an extremely poor result. This combining method givesampling, Eq.(6) (triangles; nonoptimal Bennett's method, Eq€7) and
inadequate weight to the contribution from the repulsive(10. with C=0 (squares and simple averaging, Eq2). The error-bar
d tly th . istently | b represents 67% a confidence limit based on the variance of block averages.
core, and consequently the pressure Is consistently 10W DY ¢ chemical potential according to the equation of sta@9 of Johnson
large amount. Among the other methods, none stand out &s al. (Ref. 23, shifted to remove the long-range contribution for compari-
exceptionally better than the others, while all give confidenceon with the simulati'on data, is presented at(#mbitrary) abscissa value of
limits smaller than the literature da’(ahough perhaps not 3% 106_. The small dlscre_pancy between the EOS _and the converged va_lues
L . can arise from system-size effects and the limitations of the semiempirical
significantly s9. The rough equivalence of these methodsg,g
might be connected to the small size of the perturbation be-
ing performed. Even though the free-energy change is ampli-
fied when dividing by the volume change, this magnification h — — KT is th idual chemical otential
does not bring out any differences in the quality of the data'V"'€"€ #r= & Np 1S he residual chemical potentia

Such a small change does not require the accuracy- &above an ideal gas of densigy, andu is the energy of the

variance-enhancing features of Bennett's method. This outest molecule when it interacts with all the others. It is pos-
ible to proceed as we did with the pressure calculation, and

come is further reinforced in examination of the convergencé : . . .
of the averages, Fig. 4. Simple averaging is always off th&PProximate the two stages by inserting and deleting a mol-

scale, but the other methods are indistinguishable. We not%Cule frlom thd\';jp?]rt'%le systen(as Ioa_gv?s ;hg moI;zcu:]e IS
that the failure of our “saturation” pressure to consistently not too large and the density not too highve did not do that

increase with temperature is an indication of possible probi—n this study, and instead performed separate simulations of

lems in the saturation density data of Vestzal, systems oN andN+ 1 particles, as prescribed by Ed.2).
! urad e We used the methods described above to compute the

residual chemical potential of a Lennard-Jofied) system.
The simulations are conducted at tN&/T ensemble with
system densitiepa®=0.9 and 0.8, anéT/e=1.0 (whereo
The chemical potential calculation was discussed in thé@nd & are the LJ parametersin both densitiesN=108 is
Introduction. It is a FEP in which the perturbation systemsused and no long-range correction is applied. The free-
differ in the presence of a single molecule. In principle, theenergy perturbation sampling is conducted once at the end of
overlap-sampling and Bennett's methods should be appliegach MC simulation cycle, which contaibsrandom trans-
by performing a simulation ol +1 molecules perturbed by lational displacement moves. An equilibration run of 2
deleting one of them, and performing another simulation of< 10° cycles is carried out before starting the FEP sampling.
N molecules and perturbing by adding another at randomyve examine the convergence of the different methods in Fig.
thus 5, and compare with the value given by the equation of state
B of Johnsoret al?% The simple averaging method E@) pro-
(w(uye P2y d learl i i .
r— ’ (12) uces clearly unacceptable results, showing no sign of con
(w(u)e™ P2y verging to the correct value, while presenting error estimates

B. Calculating the chemical potential
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FIG. 6. Cumulative average of the chemical potential of SPC water at 29§|G. 7. Same as Fig. 6, except temperature is 373 K. Literature yRlele
K, as a function of sampling lengtfsimulation cycle} results are made  27) of chemical potential under similar simulation conditions-i85.2 in

dimensionless with the LJ epsilon for the O-O interacti¢850.4 J/mo), reduced units.
and are in excess of an ideal gas at the same density. The methods used are
indicated by the symbols as follows: overlap sampling, &g.(triangles;
nonoptimal Bennett's method, Eq&) and (10), with C=0 (squarey op-
timal Bennett's method withC=—41.77 (circles; standard, single-stage
Widomciinsﬁrtion(fila;nohd?hand simple ?Vs_fagi“?' Ez‘ﬁ62> Z(CF_OS_SZ}_S Tthz and Haymet’ In these previous studies, thermodynamic in-
[J‘i/p&réeda\;ﬁ:f Iine.-Tzelr;rro?—E;?;”?;J;ressl;nlteg;;)ionﬁ’de?\z I(rtlmli;:a?’e te,gratlon and much leng,thler multl.stage methods were ap-
barely visible—about the same size as the symbols—for the optimal BenPlied. The reported chemical potentials aré1.77 for 298 K
nett’s methogt the reported confidence limits from the previous studies isand —35.2 for 373 K. We make these and our results dimen-
in_dicated on e?ther end of. the dashed line. Spme data series are shiftagonless with the L& for the O-O interaction$650.4 J/mo)|,
slightly to the right to permit error bars to be discerned. and they are reported in excess of an ideal gas at the same

density. In this study we udé= 256 water molecules, which

is different from the literature; this difference would slightly
that indicate(falsely) an increasingly precise result. Even offset the chemical potential, but the literature values should
single-stage Widom’s methdd early in the simulation, pre- still provide a reasonable reference. The definition of sam-
sents error bars that are smaller than the inaccuracy of thaling size is the same as that of LJ simulation, except that
calculation; but it also displays an acceptable degree of coreach simulation cycle also contaiNsrandom rotational MC
vergence to the correct value as the simulation proceedsnoves. The configuration is pre-relaxed witkk 80° MC
Overlap sampling Eq(6) and Bennett's method Eq10)  cycles before proceeding with the FEP sampling.
(using a nonoptimal valu€=0), both show good results, Figures 6 and 7 present data from the different methods
with Bennett’s yielding a correctly converged result veryat T=298 K and 373 K, respectively, similar to that given in
quickly, already at the beginning of the plot. The free-energyFig. 5 for LJ. Bennett's method was applied in both opti-
difference is rather close to zero, relative to the extremes ofally (C=—41.77-35.2,resp.) and nonoptimallyC=0),
energy that are observed in the insertion and deletion, so iand these applications provide the only acceptable results.
this case the arbitrary selection 6&=0 is not too far from  All other methods—Widom'’s, simple overlap sampling, and
the optimum value. simple averaging—provide values that differ from the cor-

Now we consider the chemical potential of a waterrect chemical potential by an amount significantly greater

model, which is a much more difficult average to measurghan indicated by their confidence limits. In contrast, Ben-
due to the large entropy change of the perturbationghly  nett's method, particularly with the optim@l has converged
7k; the free-energy change is aboukTI0 but this is of less  correctly almost by the beginning of the plot. There remains
relevance to the difficulty of the calculatipniWe expect a a small but significant difference between optimal and non-
hard time for the direct FEP measurement and want to useptimal Bennett's method in Fig. 7. This outcome highlights
this calculation to examine the performance of the simpléehe insidious nature of the inaccuracy of these calculations. It
overlap and Bennett's methods. We choose the SPC fitodelis likely that the optimal-Bennett's method is providing the
for water and appl a 6 A cutoff for interaction potential, more accurate result. In principle it is a better method, and
with no long-range correction of any type. The simulation isit is in better agreement with the literature value. The non-
conducted in cubic simulation box with periodic boundaryoptimal form is not bad, and in particular it shows pretty
condition applied. The system densitys=1.0 g/cn?, and  good accuracy, at least in comparison to the other methods—
two temperatures are examindd=298 K and 373 K. These only the precision of the calculation is noticeably compro-
settings are similar to those of Hermaetsal?® and Quintana mised by the use an a less-than-optimal valueCofThe
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